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Abstract
Public institutions have begun to use AI systems in areas that di-
rectly impact people’s lives, including labor, law, health, and migra-
tion. Explainability ensures that these systems are understandable
to the involved stakeholders, while its emerging counterpart con-
testability enables them to challenge AI decisions. Both principles
support the responsible use of AI systems, but their implementation
needs to take into account the needs of people without technical
background, AI novices. I conduct interviews and workshops to ex-
plore how explainable AI can be made suitable for AI novices, how
explanations can support their agency by allowing them to contest
decisions, and how this intersection is conceptualized. My research
aims to inform policy and public institutions on how to implement
responsible AI by designing for explainability and contestability.
The Remote Doctoral Consortium would allow me to discuss with
peers how these principles can be realized and account for human
factors in their design.
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1 Foreword and overview
I am a Ph.D. student in explainable AI (XAI) at the University of
Vienna in the fourth year of study during the consortium. My thesis
is part of the research project "Interpretability and Explainability
as Drivers to Democracy", supervised by Sebastian Tschiatschek,
Torsten Möller, and Laura Koesten, and projected to be completed
by autumn 2026.
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My thesis’ main overarching research question is how explana-
tions can help AI novices understand and contest AI systems
that are implemented in public institutions. Explainability and
contestability are seen to support the responsible use of AI by im-
proving transparency, human autonomy, and accountability [1, 17].
But their implementation and evaluation remain challenging due to
the difficulty of adapting designs to different stakeholders and use
case settings. To date, I conducted three interview studies examining
the design of explanations for AI novices and one interview study
on the intersection of explanation and contestation. All projects
focused on end-users and people who might be affected by the de-
cisions of ADM systems, including the system’s users and ‘decision
subjects’ [25]. By focusing on these stakeholder groups, I aim to
gain insight into how explanation and contestation methods can
award decision subjects ‘democratic control’ [8] and alleviate infor-
mation asymmetry [5], power imbalances [14], and the ‘algorithmic
imprint’ [13] that AI systems are known to produce.

In the following, I will outline my research’s motivation and
describe two published studies (Section 2). The first study was
conducted in the summer of 2022 and published at FAccT’23 [36]
(Section 3). The second study was conducted in the summer of 2023
and published at the International Journal of Human-Computer
Studies [38] (Section 4). I then outline two current projects, the
dissertation status (Section 5) and the expected benefits and contri-
butions (Section 6).

2 Introduction
The risks of using AI systems in high-stakes settings have been
discussed at large [8, 32, 34]. To counteract the resulting risks, prin-
ciples were compiled to ensure trustworthy [18] and responsible [7]
use of AI systems. These principles were incorporated into legal
texts such as the GDPR, DSA, and the AI Act to govern the develop-
ment and deployment of AI systems in the EU through safeguarding
fundamental rights and conducting risk-based assessments [26].
However, realizing these conceptual principles in practice proves
challenging. Both explainability and contestability are realized dif-
ferently for different stakeholders, since developers [21, 24, 29, 33]
have different aims and prior knowledge than non-technical stake-
holders [2, 19, 27]. Further, as current regulations do not specify
their implementation, the operationalization of both principles will
manifest through the actions of regulated actors and extrajudicial
processes [30], including through public institutions, standardiza-
tion bodies, and civil society organizations. This opens up a space
of interpretation for how these principles should be realized and
what it means to comply with them [1].
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In practice, explanations can help numerous functions, explain-
ing either the system’s inner workings (descriptive) or the norms
and reasons governing its use, connecting to justifications [17]
(normative). For example, developers can use explanations to un-
derstand if an AI system accurately predicts the employability of
job-seekers, while decision subjects can use them to understand
how a decision was made and which options of contestation are
available to them. Due to this heterogeneity in aims and informa-
tion needs, explanations should be adaptive and personalized to the
individual [11, 42], being not only a means of information but also
of empowerment for decision subjects [4, 8]. Similar challenges
arise for the design of contestation mechanisms, depending on
whether a single person contests or a collective and whether they
use judicial or non-judicial channels.

Investigating how explanation and contestation mechanisms
can be made suitable for different audiences is complicated by
various factors: First, AI lifecycles encompass large amounts of
information [12] that need to be structured and presented in a sen-
sible manner; second, evaluating if stakeholders understand a given
explanation is difficult as it involves mental processes that XAI
research does not always address [16, 31]; third, effects of explana-
tions are influenced by perceptions of the deploying institutions,
necessitating considerations of context [39, 46]; and fourth, while
explainability is posited as a necessary precondition for contesta-
tion, their intersection has only begun to be mapped out [47]. To
gain insight into resolving these challenges, my thesis addresses
the following research questions.

• RQ1: How do different explanation modalities impact partic-
ipants’ understanding? [36]

• RQ2: What are affected stakeholders’ information needs
when deciding on adopting an ADM system? [38]

• RQ3: How are explainability and contestability linked in
their design and regulation?

Two published papers address RQ1 and RQ2, a third addresses
their implementation in an explanation design, and a fourth ad-
dresses RQ3 in a just completed and submitted paper. My contri-
butions to this point include a conceptualization and empirical
examination of participant understanding, using the "six facets
of understanding" framework by Wiggins and McTighe [45] (Sec-
tion 3) and a collection of affected stakeholders’ information needs
about high-risk AI systems (Section 4). Current projects further
provide insights into developing explanation designs for AI novices
in groups and outlining the intersection of explainability and con-
testability (Section 5).

3 First study (RQ1): Participant understanding
The first study was published under the title "On the Impact of
Explanations on Understanding of Algorithmic Decision-Making"
at FAccT’23 [36]. Its goal was to better conceptualize what it means
for people to understand explanations. Understanding enables the
satisfaction of epistemic and substantial desiderata [20], such as
assessing whether a model makes fair and transparent decisions.
Explanations are a means to increase understanding, and thus,
knowing how understanding is constituted is crucial to designing
better explanations. While prior research in XAI often used un-
derstanding as the success metric of explanations [40, 41, 44], the

term was rarely specified to describe how understanding develops
cognitively or didactically. Research in the learning sciences ar-
gues that understanding is more than pure knowledge retrieval,
but rather the ability to use acquired knowledge flexibly and in
different contexts [6, 9, 45]. This study examined whether concepts
from the learning sciences could be used to analyze participants’
understanding of explanations (in textual, dialogue, and interactive
modalities). We took the Austrian AMS Algorithm as an example
for high-risk AI systems in public institutions [23]: a system de-
veloped to predict job-seekers’ employability based on statistical
comparison with past data [3].

3.1 Methods
We conducted in-person interview studies with 30 participants,
sampled from the employment agency and public locations in Vi-
enna. Participants were presented with one of three explanation
modalities, taking the form of slide shows detailing the decision
process of the AMS Algorithm, which differed in how additional
information was conveyed (per textual or verbal comments or in-
teractive controls). Interviews were recorded, transcribed, and sub-
sequently thematically analyzed both inductively and deductively
using the "six facets of understanding" framework [45]. Articula-
tions of participants were coded if they showed a specific process
of understanding: explaining, interpreting, applying, taking per-
spective, empathizing, and self-reflecting on knowledge.1 Further,
articulations were coded inductively regarding fairness perceptions,
producing code categories which were then compared with the four
dimensions of fairness perceptions defined by Starke et al. [43] (al-
gorithmic predictors, human predictors, comparative effects, and
consequences of ADM).

3.2 Findings
Our explanation setting allowed participants to share their un-
derstanding processes more thoroughly than a written test or as-
sessment would have likely captured them [35]. Examining these
processes, we observed that participants who felt more personally
affected by the AMS Algorithm tended to use more "emotional"
(interpret, empathize, self-reflect) than "rational" (explain, apply,
take perspective) facets of understanding – highlighting the impor-
tance of emotional ways of understanding which are not usually
considered in explanations. Further, participants who used mul-
tiple facets at once, e.g., explained what was happening, gave an
example, and took a different perspective all in one statement, were
able to articulate more detailed fairness assessments and often re-
flected on their knowledge. Regarding the modality, we found that
participants welcomed the dialogue explanation to exchange and
share their thought processes. In contrast, the textual modality led
to understanding barriers (forgetting, inability to apply and reflect
on knowledge [45]). We concluded that the individuality of under-
standing processes demanded a better adaptation of explanations
to different stakeholders’ information needs and ways of thinking,
motivating the second study’s design and research objectives.

1According to the six facets framework, the more of these facets someone can cover,
the better their understanding of a topic.
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4 Second study (RQ2): Affected stakeholders’
information needs

The second study was published under the title “Information That
Matters: Exploring Information Needs of People Affected by Al-
gorithmic Decisions” at IJHCS. This study investigated how ex-
planations could adapt to AI novices in content [28], form [10],
and purpose [15] by examining which information AI novices who
were also decision subjects deemed relevant. We used an approach
similar to Liao et al. [21]’s collection of AI practitioners’ informa-
tion needs to collect AI novices’ information needs and create the
"XAI Novice Question Bank" (Figure 1). The collection is meant
to be both a guide for future explanation design and aid in direct
stakeholder interaction, increasing AI systems’ intelligibility [22]
by giving an informational overview. In addition to the AMS Algo-
rithm, we used a health wristband as a second use case to examine
whether a change in domain and system would also impact partici-
pant inquiry.

4.1 Methods
We conducted in-person interview studies with 24 participants (12
participants for each use case). Participants were required to have
no previous knowledge about algorithmic systems (e.g., software
developers would not qualify) and to be somehow affected by the
system (i.e., present or past job-seekers, retirees, or family of people
in care). Participants were presented with one use case and given
30 minutes to ask verbal questions about the system to the study
examiner before deciding on its adoption. The process was framed
as a simulated public vote to incentivize information acquisition.
The 30-minute inquiry was split into two 15-minute phases: first,
participants inquired freely, then they received the XAI Question
Bank [21] as inspiration to examine its usefulness for AI novices.
Self-reports of understanding, decision confidence, and perceptions
of risks and benefits were elicited before and after the inquiry.
Interviews were transcribed and thematically analyzed, using an
inductive approach for creating question categories and a deductive
approach for comparison with the XAI Question Bank [21]. Self-
reports were visualized and compared with participant inquiries to
gain insight into factors influencing information needs.

4.2 Findings
The XAI Novice Question Bank (Figure 1) depicts categories of
participants’ information needs and highlights the relevance of
system context and system usage. Crucially, existent explanation
approaches do not address questions in these categories, such as
What is the intention of deploying the system? and How will the
system impact personal relations? The technical focus of the XAI
Question Bank [21] proved valuable for participants by offering
questions that they did not consider themselves but still found rele-
vant. Further, participants who perceived the system’s risk to be
high focused their inquiries on intention and consequence, whereas
participants who perceived low risk rather focused on the system’s
operation. In conclusion, we provide a list of six key implications ar-
guing that explanations for affected stakeholders must incorporate
more and different information than for technical audiences and
that further research is needed to ensure that explanations support
affected stakeholders’ agency.

5 Dissertation status and next steps
To date, I have published two first-author papers. A third paper
reports on implementing the findings from RQ1 and RQ2 into a con-
crete explanation design for AI novices in groups and as individuals,
featuring an interview and workshop study with 43 participants.
It is currently being prepared for re-submission [37]. A fourth one
examines RQ3, the intersection between explainability and con-
testability in design and regulation, by reporting findings from 14
interviews with AI regulation experts, having just been submitted
for review.

In the next steps of my thesis, I aim to develop and test a digital
explanation interface that can adapt to different stakeholders based
on the insights of RQ1 and RQ2. I also plan to explore more closely
how to design descriptive and normative explanations that can
support contestation and how this can influence the deployment of
responsible public AI systems. Further, as providing contestation
can also lead to an excessive administrative load, finding partic-
ipatory approaches that allow for democratic control by citizens
without overwhelming the deploying institutions is a key chal-
lenge that warrants further research. Finding a way to implement
explainability and contestability according to regulation and best
practices in design while adjusting these measures to the capacities
and limitations of public institutions will thus be one of my main
areas of interest.

6 Benefits and contributions
The Remote Doctoral Consortium will be the first consortium that
I attend, allowing me to critically discuss my research outlined
above with other Ph.D. students and obtain new perspectives on
its realization in terms of design and human factors. Additionally,
receiving feedback on my overall research direction from senior
researchers in the field of HCI would be highly valuable. As I am
further considering applying for postdoctoral grants or research
positions at EU institutions, I would appreciate guidance on how
to proceed on this career path.

Further, networking and discussing AI research is both enjoyable
and a valuable source of collaboration for me. My research stay at
Télécom Paris and my latest project were made possible through
connections with peers and colleagues whom I met at CHI’23 and
FAccT’23. Together, we established a research project that brought
together HCI, design, sociology, and law researchers from three
different countries, creating a model for interdisciplinary collabo-
ration. My future projects will likely be situated in similar research
spaces and would greatly benefit from continued exchange and
networking with colleagues from diverse fields.

In terms of contributions, I will be happy to share my experience
in conducting empirical studies with qualitative methods, insights
about working with different groups of people (e.g., job-seekers,
retirees, and employees of public institutions), and recruiting strate-
gies (e.g., street sampling, establishing contact to organizations,
compensation). As I hold a Master’s degree in professional writing
and have experience in writing and editing journalistic, fictional,
and academic texts, I will gladly offer writing advice or feedback to
any other Ph.D. students.
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Figure 1: The XAI Novice Question Bank and system-inquiry diagram. Depicted are four categories of questions that subsume
inquiries by affected stakeholders about two ADM systems. An asterisk (*) indicates that the question is already present in the
XAI Question Bank [21]. Numbers and letters refer to stakeholders and procedures in the system deployment process.
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