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Explainability and its emerging counterpart contestability have become important normative and design principles for the trustworthy
use of AI as they enable users and subjects to understand and challenge AI decisions. However, the regulation of AI systems
spans technical, legal, and organizational dimensions, producing a multiplicity in meaning that complicates the implementation
of explainability and contestability due to the difficulty of defining them. Resolving this conceptual ambiguity requires specifying
and comparing the meaning of both principles across regulation dimensions, disciplines, and actors. This process, here defined as
translation, is essential to provide guidance on the principles’ realization. To this end, we present the findings of a semi-structured
interview study with 14 interdisciplinary AI regulation experts. We report on the experts’ understanding of the intersection between
explainability and contestability in public AI regulation, their advice for a decision subject and a public agency in a welfare allocation
AI use case, and their perspectives on the connections and gaps within the research landscape. We provide differentiations between
descriptive and normative explainability, judicial and non-judicial channels of contestation, and individual and collective contestation
action. We further outline three main translation processes pertaining to the alignment of top-down and bottom-up regulation, the
assignment of responsibility for interpreting regulations, and the establishment of interdisciplinary collaboration. Our contributions
include an empirically grounded conceptualization of the intersection between explainability and contestability and recommendations
on implementing these principles in public institutions. We believe our contributions can inform policy-making and regulation of
these core principles and enable more effective and equitable design, development, and deployment of trustworthy public AI systems.
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1 Introduction

Explainability and contestability are central principles in the trustworthy development and deployment of public AI
systems [104]. However, while these principles are defined and discussed in both explainable AI (XAI) [47, 59, 102] and
legal [7, 52, 65] research, an approach connecting these perspectives has not yet been adopted. The need for this unified
approach is evident when considering the treatment of both principles in current AI regulation, such as the General
Data Protection Regulation (GDPR) and Digital Services Act (DSA). While these texts can be understood to provide for
explanations in AI systems to ensure contestability1, they do not include guidelines to translate their legal provisions
into tangible system requirements [65].

1The right to explanation is debated [22, 89, 98], but texts such as the GDPR, DSA, and EU AI Act provide for explainability in algorithmic decisions [65].
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2 Schmude et al.

Explainability serves the purpose of increasing stakeholders’ understanding of an AI system and to enable informed
decision-making [55], while contestability allows stakeholders to challenge and appeal algorithmic decisions [62]. A
range of methods (‘mechanisms’ [4]) has been suggested in XAI and HCI through which these principles are realized,
such as explaining feature importance, providing counterfactuals, or requesting intervention. But two main aspects
remain underexplored: i) how explanation and contestation mechanisms intersect, and ii) how to proceed when
implementing these mechanisms according to regulatory provisions.

We formulate two challenges that impede the implementation of explainability and contestability. First, both
explainability and contestability are polysemic and require differentiation, as XAI, design, and legal research all employ
the same terms but do not necessarily refer to the same concepts. Furthermore, the concrete realization of both principles
depends on the involved actors [48], domain [99], and use-case setting [15]. This multiplicity of meaning excludes
a one-size-fits-all approach [41, 75] and instead requires guidelines that can be applied in a variety of contexts [65].
And second, AI in high-stakes scenarios is a comparably new phenomenon, with both theoretical background and
regulatory oversight still in development. Consequently, there are few best practices and guidance that can aid in the
implementation of contestability [5, 52, 62] and interdisciplinary approaches to the creation of legislation have only
begun to be mapped out [70]. Closing this gap between regulation and implementation requires policy-making that is
evidence-informed [63], i.e., that is supported by research that bridges disciplines and provides empirical grounding.

To this end, we present findings from a task-based interview study with 14 interdisciplinary experts in AI regulation.
Participants engaged in a card-sorting activity, analyzed a welfare allocation AI use case, and reflected on a graph
representing the research landscape of explainability and contestability. Our findings highlight distinctions between
descriptive and normative explainability, judicial and non-judicial contestation channels, and individual and collective
contestation action. Participants further defined the intersection of explainability and contestability in their capacity to
improve citizen empowerment and highlighted that both principles are not effective if the underlying policy governing
a system’s deployment is flawed. In the analysis of our findings, we are guided by the following research questions.

[RQ1] Conception: How do AI regulation experts define and map the intersection between explainability and
contestability of AI systems?

[RQ2] Implementation:Which are themajor points of translation and points of friction in the (regulatory, institutional,
and technical) implementation of explainability and contestability?

This work contributes an empirically grounded differentiation of explainability and contestability, a description of
the major processes of translations and points of friction in their implementation, and a discussion embedding both
principles into the larger research landscape. Our objective is to support an evidence-informed [21, 63] discussion to
guide the implementation of policies surrounding the deployment of explainable and contestable public AI systems.

2 Background and related work

In this section, we situate our work in relation to public sector AI, introduce the principles of explainability and
contestability, and describe the work to date on their intersection, both from a policy and a design perspective. We then
conceptualize regulation and translation, two lenses that we will use to guide our analysis.
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“Two Means to an End Goal”: Connecting Explainability and Contestability in the Regulation of Public Sector AI 3

2.1 Trustworthy AI systems in the public sector

This study examines high-risk AI systems deployed in public institutions that can significantly impact individuals’
fundamental rights, safety, or health [50]. Research shows that these systems, despite their deployment in high-
risk domains, are frequently dysfunctional [54, 79], discriminatory [24], and harmful through aggravating power
imbalance [34, 72] and restricting autonomy [78]. For these reasons, both researchers [9, 13, 49, 84] and policy makers [35,
46, 74, 75] have advocated that high-risk AI systems should alignwith value frameworks such as trustworthy or responsible
AI [27, 40, 94], which emphasize human agency, oversight, transparency, accountability, and fairness [39]. Explainability
and contestability support these frameworks by enabling people to understand [55] and challenge [44] AI decisions.
Although both principles are integrated into various design frameworks [5, 48, 55, 59], their implementation as part of
the EU AI regulation remains challenging [38, 65, 70], as we describe in Section 2.2.3.

2.2 Explainability and contestability in policy and design

2.2.1 Explainability. Policy texts understand explainability to provide information about an AI system’s logic [36], core
parameters [37], and specific purposes [8], while allowing users to comprehend system operations [65] and interpret
results [35]. Although established as a principle, these texts leave implementation details unspecified, including choices
between global or local explanations andwhether they should be provided before or after decisions [65]. These details can
make large differences in the design of explanations since the aim for developers [57, 58, 67, 81] is fundamentally different
from that of non-technical stakeholders [6, 48, 66]. Effective explanations adapt to stakeholders’ expertise [18, 66] and
objectives [41, 48], whether it is evaluating fairness [32, 91] or understanding the deployment context [33, 88].

2.2.2 Contestability. Contestation rights are contained in the EU Charter of Fundamental Rights’ guarantee of being
heard [14] and in both GDPR Article 22 and the Council of Europe’s Convention 108+2 [7, 30]. Research on contestable
AI design examines how various stakeholders, from human operators to decision subjects and third parties, can utilize
mechanisms to challenge algorithmic decisions [4, 7, 60]. Examples of such mechanisms include data input control [56],
decision revision requests [59], and various audit methodologies [29, 64, 80, 90]. In both design [3, 7] and policy
frameworks [22, 52, 65], the principle of contestability is described to be enabled through explainability.

2.2.3 Connecting explainability and contestability. Explanations are considered foundational for effective contestation,
regarding both individual decisions [96] and system-level performance [23]. Understanding the intersection of both
principles is thus crucial for the development of trustworthy public AI systems that support human autonomy, justice,
and legitimacy [28, 44, 56]. However, there is no established design approach to realize the rights to contestation and
explanation in AI systems [52, 89]. Importantly, given that current regulations lack clear implementation guidelines and
that judicial systems cannot accommodate universal contestation rights [52], both explainability and contestability will
manifest themselves largely through the actions of regulated actors and extrajudicial processes. This means that their
operationalization through mechanisms [70] and human oversight configurations [31] will be determined by public
institutions, standardization bodies [65], industry [28], and civil society organizations [71]. This interpretative flexibility,
combined with competing interests, leads to diverging perspectives on how both principles should be implemented
according to regulation.

Empirical research at the intersection of explainability and contestability has revealed nuanced relationships between
these principles. Previous research has shown that explanations supported participants’ perceived informational

2The Council of Europe’s Convention for the Protection of Individuals with regard to Automatic Processing of Personal Data.

Manuscript submitted to ACM



4 Schmude et al.

fairness and contestation mechanisms enhanced procedural fairness, but that explanations alone did not prompt
participants to question the decision-making process overall [102]. In contrast, another study demonstrated that
counterfactual explanations indeed led participants to challenge the underlying decision system by revealing structural
inconsistencies [96]. Lastly, in design workshops on contestation mechanisms, participants proposed features that often
aligned more closely with explainability than with contestability [5]. While the delineation between explainability and
contestability thus remains challenging, research consistently indicates that stakeholders value mechanisms that allow
active influence, incorporating principles of autonomy [78], empowerment [28], and representation [95].

2.3 Analytical lenses: Regulation and Translation

In the following, we propose two lenses to explore the relationship between explainability and contestability: regulation
and translation. The regulatory lens reveals how formal requirements and design choices shape these principles, while
the translation lens examines how diverse fields—such as computer science, policy-making, and design—interpret and
operationalize them. By analyzing stakeholder disagreements and key decision-making bottlenecks, we aim to shed
light on how these principles are realized in practice.

2.3.1 The role of regulation in achieving trustworthy public AI. Black [11] characterizes regulation as “a process
involving the sustained and focused attempt to alter the behavior of others according to defined standards or purposes
with the intention of producing a broadly defined outcome”. This process becomes particularly complex when regulating
immaterial sociotechnical artifacts such as AI systems, rather than traditional material objects. This is due to the
multidisciplinary nature of AI, which poses unique challenges for regulatory frameworks in balancing technological
capabilities, societal values, and ethical principles.

Although classical regulation relied on unilateral “command-and-control” mechanisms by public institutions [17],
modern approaches have evolved towards “regulation by design” [68, 101], where stakeholders collectively translate
legal norms into technology and actionable practices, creating a feedback loop between regulatory intent and implemen-
tation [77]. Importantly, internal governance and design choices within public institutions thus constitute their own
regulatory dimension. Public AI systems, for example, embed societal values through design decisions that shape citizen
interaction [69]. Effective AI regulation must, therefore, reconcile top-down normative frameworks with bottom-up
processes driven by technological design and user interactions, necessitating an understanding of the interdependence
of legal frameworks, design practices, and institutional governance.

2.3.2 Examining explainability and contestability through their processes of translation. The sociology of translation
studies the ways in which diverse groups of actors and organizations make sense of concepts such as explainability and
contestability in the act of regulating public AI. Social worlds, first theorized by Becker [10], encompass the actors and
organizations that shape a given concept. Understanding these social worlds is crucial for analyzing how individuals and
organizations collaborate and compete and how knowledge production is structured. Science and technology studies
(STS) have examined technical objects in society through frameworks such as the Social Construction of Technology [76]
and Actor-Network Theory [19]. These approaches posit that technological objects and their societal deployment are
inseparable, each mediating the other’s development and impact.

2.3.3 Using regulation and translation to understand mobile phones—an example. A typical example of a sociotechnical
system is the mobile phone: while it is a concrete technological object, the mobile phone is mostly useless without
regulatory frameworks governing frequency allocation, infrastructure deployment, and data privacy. These regulations
Manuscript submitted to ACM
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shape both technical standards and user behavior. Simultaneously, different social worlds translate the mobile phone’s
meaning and purpose differently: telecommunications engineers see it as a network node requiring optimization,
privacy advocates as a surveillance risk, teenagers as a social status symbol, and businesses as a productivity tool.
This multiplicity of interpretations influences how various stakeholders engage with mobile phone regulation, from
spectrum allocation to privacy protection measures.

3 Methods

In this section, we describe our methods and study procedure. We conducted a task-based interview study with 14
experts in the regulation and design of AI systems (Section 3.2). The interviews were composed of three main elements:
a card sorting activity, a use case discussion, and an analysis of a citation graph representing research on explainable and
contestable AI (Section 3.1). The interviews were analyzed using inductive and deductive thematic analysis (Section 3.3).

3.1 Study setup and procedure

Figure 1 gives an overview of the overall study process. All interviews were conducted online using the collaboration
platform Miro and took around 90 minutes.

Welcome Wrap-up
1) Card sort

Participants sort 40 
concept cards into  
self-defined categories.

2) Use case discussion

Participants reflect on 
ways to introduce 
contestation into ADM 
use case. 

3) Graph analysis 
Participants explore and 
comment on interactive 
citation graph.

Adjusting

algorithm


inputs

Creating 
feedback 
channels

Providing 
auditing 

APIs

Fig. 1. Study procedure overview. Participants completed three sequential tasks: 1) sorting 40 concept cards into self-defined
categories related to AI systems, 2) analyzing explainability and contestability in a specific algorithmic use case from personal and
institutional perspectives, and 3) exploring an interactive citation graph of research publications on explainability and contestability.

3.1.1 Card sort. In the first activity, participants were asked to sort 40 cards containing explanation and contestation
mechanisms into self-defined categories to elicit their mental structure and understanding of both principles. Card sorts
are an empirical method of uncovering how people organize and categorize knowledge [100], in which participants
sort a set of cards into categories that can be defined a priori (closed) or by the participants themselves (open) [86].
When the sorting is complete, each category is named and discussed. The method allows comparing differences and
commonalities in how people perceive and categorize the items in question [85]. The recommended number of cards
depends on the variety of card types and the types of items and ranges from 20 to 100 cards [85, 93].

For the study, we conducted an open card sort with 40 cards where participants sorted the cards only once (“all-
in-one” approach [85]). The open sort allowed categorization to emerge organically, avoiding predefined categories.
The single sort was chosen due to insights from four pilot studies, which indicated that repeated card sorts would
prolong the study duration without giving many new insights. The set of cards represented a range of explanation
and contestation mechanisms derived from publications in human-computer interaction, legal studies, and design
research [5, 25, 56, 59, 61, 62, 65, 95, 98, 102]. These papers were selected on the basis of citation counts and reference
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6 Schmude et al.

networks and were used to extract processes and design solutions to create the cards. Participants could add items
using spare cards if needed. Each card featured a gerund phrase (e.g., ‘Evaluating individual results,’ ‘Disclosing the
algorithm to experts’, ‘Requesting new decisions’) to emphasize action while remaining flexible for interpretation. A
depiction of the full set of cards is provided in the supplementary material.

3.1.2 Use case discussion. To examine how participants would apply their understanding of explainability and con-
testability in practice, the second part of the study asked participants to review a description of an algorithmic system
designed to predict welfare fraud, detailing its purpose, training data, and public reception. They were presented with
two scenarios: a fictional welfare beneficiary who was flagged for fraud and wanted to contest the decision, and the de-
ploying social security agency looking for advice to enhance the system’s explainability and contestability. Participants
were asked to provide advice based on existing measures in similar contexts and their professional experience. These
scenarios aimed to encourage participants to consider different perspectives and address all relevant aspects of the case.

The study’s use case represented a public AI system used by Caisse d’allocations familiale (CAF), a part of the French
social security services [83]. The model uses logistic regression to predict welfare fraud likelihood among beneficiaries
and was trained on data from household investigations and corresponding overpayments. The number of decision
subjects amounts to 13 million households (nearly half of France’s population), of which 100,000 are annually flagged for
detailed investigation [82]. In October 2024, civil society organizations criticized the system for alleged discrimination
against marginalized groups and ineffectiveness [1], sparking public debate on high-risk AI systems and their regulation
under the EU AI Act. The use case thus exemplifies broader challenges of integrating public AI systems into society and
invites reflection on how explainability and contestability can support their resolution.

3.1.3 Citation graph discussion. To elicit participants’ thoughts on the landscape and interconnection of academic
literature regarding explainability and contestability, we asked them to comment on a network representation of said
literature. We extracted 648 academic articles related to contestability as well as their references from the search engine
Web of Science using the following query:

(ai OR “artificial intelligence” OR “algorithm* decis*”) AND

(“contest*” OR (“right to” AND “explain*”))

This query captured academic papers that mentioned both AI or algorithmic decisions and contestability or the right
to explain. We included the latter to create links with explainability in legal literature while excluding unrelated work
in XAI. This query returned 648 papers, spanning from 1991 to 2025; note, however, that 151 papers (23.3%) have been
published in 2024 alone, and 465 (71.8%) have been published in 2020 or after. We built the network 𝐺 = (𝑉 , 𝐸) from
these results; the set of nodes 𝑉 represented the articles, an edge was inserted between two articles if they shared at
least 𝑘 = 4 references, i.e., they cited the same bodies of work. We set 𝑘 manually after iterating through values between
1 and 10, selecting the value that increased visual readability.3 In order to exhibit clusters in the graph, we used the
Louvain algorithm [12]. The graph was presented interactively, allowing the interviewees to get more details (e.g., title,
year of publication, authors, . . . ). The graph is available under contest.graphuzu.fr and depicted in the appendix.

3At the extremes, 𝑘 = 10 leads to multiple disconnected subgraphs, and 𝑘 = 1 leads to an overly dense graph that is hard to read visually.
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3.2 Participants

We recruited 14 experts from European universities and public institutions who could provide insight into the study’s
research questions through their research or occupation. Participants were selected based on their professional back-
ground, examples of which included involvement in the EU Commission’s High-Level Expert Group on AI (EU AI HLEG),
in standardization bodies’ regulation processes, or the legislative process of the EU AI Act and similar legal texts.4 This
selection of participants aimed to capture interdisciplinary viewpoints on explainability and contestability, the main
aspects of their regulation, and the steps and challenges public institutions would face in their implementation. The
recruitment methods included recommendations from the authors’ networks, snowball sampling, and direct invitations.
The sample size followed qualitative research guidelines, focusing on code and meaning saturation [45].

3.3 Analysis

For RQ1-Conception, we used inductive thematic analysis [16] to examine the participants’ conception of explainability
and contestability, the main aspects of their regulation and institutional implementation, the role and responsibilities of
the involved stakeholders, and the differences in perspectives between disciplines. The created codes were regularly
compared between authors to develop, merge, and delete codes. RQ1-Conception is further informed by comparisons
of how participants arranged and categorized explanation and contestation mechanisms in the card sorts, focusing
particularly on the sorting criteria and thematical similarities between participants’ clusters.

For RQ2-Implementation, we employed both inductive and deductive thematic analysis to identify the main processes
of translation and points of friction in participants’ reports. Prifti et al. [77]’s categorization of regulation by design
here served as a framework to structure the main elements and processes of regulation, as it covers both top-down
and bottom-up approaches as described in Section 2.3.1. Further, to capture the notion of translation and map it to the
mentioned regulation structure, we drew from Callon [20]’s work on translation in sociology.

4 Results

In this section, we describe our results on how AI regulation experts conceptualize and understand the principles
of explainable and contestable AI (RQ1), as well as the major processes of translations and points of friction in the
regulatory, institutional, and technical implementation of these principles (RQ2).

4.1 RQ1-Conception: How do AI regulation experts define and map the intersection between
explainability and contestability of AI systems?

4.1.1 Explainability and contestability are polysemic and thus require differentiation. We find that while participants
had similar understandings of the overall principles of explainability and contestability, their conceptions differed in
how these principles can be differentiated and applied in practice. Overall, explainability was connected to two main
notions: 1) understanding the technical workings of an AI system, such that “the human user [...] is not treating anymore

the machine as an oracle” (P2); and 2) understanding the norms and reasons governing the AI’s decisions, deployment,
and institutional embedding, such as “know[ing] who are the people in charge or who I can contact to give more information”
(P1). Adapting formulations from the interviews, we define the first kind as descriptive explainability and the second
kind as normative explainability. Participants further linked this distinction to the definitional differences between
disciplines, as illustrated by the nature of justifications and reason-giving:

4To allow participants the freedom of anonymous expression in the interviews, demographic as well as occupational details on their persons were omitted.
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8 Schmude et al.

A core difference between the two sides is in terms of what you expect an explanation to do. [...] [L]egal

literature expects explanations to be something that’s more a reason-giving on the decision process [normative],

but then you have the problem of understanding how far the current techniques take us [descriptive]. (P9)

Contestability was primarily conceived as allowing stakeholders to challenge AI decisions. Examples included
enabling regulators to “critically process the information provided to them, and also push back against it” (P6) and affected
persons to “understand the situation and to file complaints” (P6). Participants further introduced two key distinctions
in how contestation is realized: The first distinction is between collective action and individual action. Whereas
individual contestation affords subjects the means to challenge AI decisions that affect them personally, collective
contestation means “translating personal issues into general matters and public fights” (P12) by “contesting decision

patterns rather than individual decisions” (P9). The second distinction is between judicial channels and non-judicial
channels. Judicial channels use formal means provided by the judicial system to contest decisions in court, colloquially
described as “lawyering up” (P9), while non-judicial channels support issue resolution through design solutions or direct
human intervention, such as through a mediation system or ombudspersons. Participants emphasized the importance
of differentiating the available channels of contestation and the type of action to pinpoint the meaning of contestability:

For legal scholars, [...] there is this idea of centering judicial proceedings and centering the courts, even though

most of what we could call the ‘life of the law’ is not usually in the courts. [I]ndividual contestation [is seen]

as prejudicial, [...] something that can be useful at times, but this is the main concern. (P9)

4.1.2 The intersection of explainability and contestability can be mapped through their goals, mechanisms, and limits. The
question of how both principles are linked was a central topic in the interviews with AI regulation experts. Participants
often posited explainability to be a prerequisite to contestability, stating “contesting presupposes understanding” (P2),
and, more directly, “it’s not that we want explainability for its own sake, but [...] because it facilitates contestability” (P4).
In the following, we report on how and why these two principles were perceived as tightly linked.

Goals. Participants frequently described explainability and contestability through the fact that they worked towards
the same goals and purposes. These goals were summarized as allowing “full human agency” (P2), supporting “the rule
of law” (P4), and enabling people to “gain more control in a decision that is important to them” (P11). They were also
understood to benefit citizen empowerment by alleviating opacity and information asymmetry:

The problem is that we citizens, we don’t know the technologies used by the public administrations. And

therefore, we are in a blind world in which we cannot contest, because we don’t know what is used and to

what purpose and how it works. (P3)

Explanations serve the goal of citizen empowerment by enabling citizens to assess two distinct aspects: the ac-
ceptability of individual decisions and the overall suitability of a system’s deployment. This dual assessment
can, in turn, prompt actions of contestation at the individual or collective level. In the study’s use case, participants
explained that an AI system might not be contestable in its individual decisions if all rules are followed; but that global
explanations of decision patterns can enable contesting the entire AI system if, e.g., the underlying policy is identified
as dysfunctional. In contrast, the acceptability of individual decisions becomes crucial when subjects face unfavorable
outcomes and must decide whether to contest them. P9 noted that acceptability is important so that citizens would
not use contestation channels only to impede the process and that citizens have a “good faith obligation” to “not just to
throw a cog in the wheel and delay procedures that you know that are going to be inconvenient to you, but are otherwise

acceptable” (P9).
Manuscript submitted to ACM
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For these reasons, preventing the obstruction and gaming of decision processes was perceived as a side goal
when implementing explanation and contestation measures. In their advice for a social security agency on implementing
both principles, participants stated concern that: “If they do it properly, they will be submerged by requests and contestation”
(P12). This was explained in three main points: i) citizens want to take control over the decision process to achieve
favorable results, ii) if citizens feel that their values are not represented in the decision-making process, they will be
more likely to contest, and iii) while citizens should not be overburdened with responsibilities, fully withdrawing
them and thus all ways of control forces citizens to “adapt their behavior to their interpretation of the algorithm” (P5).
This is depicted in Figure 2-A, in which spheres of responsibility of civil servants and developers are clearly separated
from those of the decision subject. As a remedy to the imbalance of responsibilities, participants suggested to include
citizens in the design process of public AI systems to improve acceptability and further fulfill requirements obliging
administrations “to consult the population in terms of impact and gather public feedback” (P9).

Contextualizing Communication of decisions Organizational responsesInception

A

B

C

D

Employee or civil servant 

using the AI to make decisions

Appeals procedure

Control of AI and its outputs

Victim of the AI or

decision subject

Understanding 

the system

Contesting the 
system’s outcome

ways to understand, 
conditions to contest

Developer of the AI

Data protection authority

Decision subject

User

Employer

Developer / provider Design and development Deployment User reactions Systemic measures

Fig. 2. Card sort structures. The image shows the structure of four completed card sorts. Participants chose different criteria and
dimensions to sort the cards into clusters, including spheres of responsibility (A), responsibility over time and per role (B), ways in
which mechanisms connect both to understanding and contesting (C), and an allocation to the implementation process over time (D).

Mechanisms. Although all mechanisms discussed in the interviews could be argued to relate to both explainability
and contestability, participants showed a more detailed understanding of mechanisms that supported explainability
than contestability. During the card sort activity, participants often created a cluster of cards that was titled with
‘transparency’, ‘understanding the system’, ‘explanations’, or ‘foundations of what you’re dealing with’. A selection of
examples is depicted in Figure 3.

In contrast, participants rarely created clusters that were connected to the overarching principle of contestability,
but rather clusters that covered different aspects of it, such as ‘control’, ‘appeals procedure’, ‘rectification’, ‘judicial
remedies’, and ‘auditing’. These categories partly mirror the distinctions described in Section 4.1.1 (judicial vs. non-
judicial channels, individual vs. collective action), indicating that contestation was not perceived as a homogenous and
self-contained collection of mechanisms and more as a principle that is realized differently depending on the contestation
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10 Schmude et al.

Fig. 3. Card sort explainability clusters. The image shows parts of six different card sorts, all containing cards that participants
related to transparency or explainability. Often, participants created exactly one cluster with a similar name to those shown. Cards
that can be found in multiple of the six clusters are colored petrol, cards that are only in one cluster are colored yellow.

actor, subject, goals, and channels. Exceptionally, P2’s card sort contained both a specific contestability cluster and
designated a number of mechanisms as “ways to understand, conditions to contest” (P2), represented in Figure 2-C.

We thus see the cause for the diverse interpretation of contestation mechanisms in the multiplicity of ways to realize
them, but also in the fact that participants were not always well-acquainted with design mechanisms that support
contestability (described in Section 4.1.3). P6 further explained that the mechanisms relating to transparency and
explanation could be comparably more well-known because the regulation of data protection is so prevalent:

[D]ata protection law is such a heavy hammer that is being wielded very frequently because [...] everybody

has heard about [it]. And that means that sometimes people try to address issues with data protection law

instead of going other routes, which maybe would make more sense if you stop to think about that. (P6)

Limits. Participants repeatedly described circumstances in which explainability and contestability would not be
enough to resolve the core issues of information asymmetry and power imbalance. Three key considerations were
that explanation and contestation mechanisms are ineffective if i) the system’s actual purpose is to enforce sanctions
on decision subjects, ii) the sampling strategy targets vulnerable populations disproportionally, and iii) non-judicial
channels of contestation are obscured or not available, as then “you cannot even exercise [the right to contestation]

properly without assistance” (P9). P4 elaborated on these aspects when asked which advice they would give to a decision
subject in the face of an unfavorable outcome:

[...] [S]he doesn’t stand a chance. Because the whole system is biased against people like her due to the

indicators that are selected for the model. Secondly, she can hardly do anything about those indicators herself.
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[...] The actual problem [...] [is] not only that the system is simply badly designed, it was badly designed on

purpose. (P4)

Participants further explained that these design choices do not necessarily originate from the agency itself but can
be prescribed “from the political level” (P5), thus confining the agency to the implementation of values that are not
self-chosen nor aligned with those of decision subjects. Several participants emphasized that individual explanation and
contestation action would be ineffective before systemic issues regarding values and policy decisions were resolved.

Regarding individual contestation, participants further problematized that it primarily serves individual interests
and thus has less potential to effect change on a systemic level. Based on their experience, P12 elaborated that decision
subjects “want to fight for their privacy and their freedom. It’s very different from fighting for privacy with a big P in

general” (P12). For these reasons, collective contestation was posited as a more effective alternative for “contesting
decision patterns [...] through things like class actions” (P9). Enacting this contestation using judicial (e.g., class action
lawsuits) and non-judicial channels (e.g., civil society organizations), which facilitate “translating personal issues into
general matters and public fights and political debates that we should have” (P12), was noted as being insufficiently
explored within the current EU jurisdiction. The capacity of inciting political debates was further assigned to
contestability rather than explainability for two main reasons: First, because for “neural nets or very complex decision

trees [...] you can’t come up with an explanation at all” (P8); and second, because a descriptive explanation does not
justify that “the decision is correct, accurate, and legit; you need to justify so people are convinced by it” (P11), thus lacking
the normative force that is essential for contestability. Leveraging the distinction described in Section 4.1.1, justification
might thus be defined as a limit of descriptive explainability, but as an essential part of normative explainability.

4.1.3 Gaps between disciplines impede mapping the intersection of explainability and contestability. Participants were
often well-acquainted with the works on the “right to explanation” [22, 89, 98] and with judicial ways of contestation,
such as appeals and redress, but comparably unfamiliar with the term “contestability” and the corresponding body of
work in design and HCI research. Several participants commented on this, stating “I’m thinking in which world I was

living [...], I didn’t notice that it was so well-developed” (P3) and “I’m not familiar with the concept of contestability as

such, [...] I rather use ‘redress’, for example” (P10). While this points to differences in vocabulary, it also indicates a more
conceptual lack of connection between fields. Participants confirmed this gap when exploring the citation graph and
stated that the lack of connection between research fields aligned with their experience: “I think that this should be
much more an explosion of different colors. [...] My experience is, in fact, that the different disciplines are not talking to each

other.” (P8) and “You have some [communities] that are closer, like [...] legal people sometimes go to the technical part, [...]

but some others are not really talking” (P9). An absence of connection to the legal literature was especially noticed in
relation to design, sociotechnical, and ethics literature. Thus, this definitory and conceptual separation between the
disciplines is one of the main challenges in mapping the intersection between explainability and contestability.

4.2 RQ2-Implementation: Which are the major points of translation and points of friction in the
(regulatory, institutional, and technical) implementation of explainability and contestability?

4.2.1 Practical implementations of explainability and contestability should keep in mind the spirit of the law.

Translation. Participants identified a key concern of implementing regulatory provisions in the question of whether
these implementations would capture the regulation’s intent, i.e., the spirit of the law. Participants who were members
of the EU AI HLEG and took part in the conception of the EU AI Act described that the group was tasked with
identifying the ethical principles on which the ethics guidelines should be based. Taking inspiration from biomedical
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ethics, these principles included autonomy, justice, non-maleficence, and explainability, which replaced beneficence,
which are common topics in ethical AI charters [51]. Other participants who were also part of the EU AI HLEG
confirmed this consensus on explainability, stating that “lawyers agreed in there, and human rights experts agreed in

there, practitioners, so that was a consensus among 55 or 52 people, and there was no doubt that this is a fundamental

requirement” (P8). Importantly, explainability was integrated into the principles and the seven key requirements even
though its prospective implementation was already registered as an issue: “[W]e put as principle something that wasn’t

really possible 100%. But we felt that it was really important to have this because it also [...] reflects on [...] contestability”
(P10). However, this fundamental requirement, the spirit of the AI Act with regard to explainability, is subjected to
a number of transformations before arriving at practical applications: its formulation as legal texts and as technical
standards, its integration into national jurisdiction, and, finally, its implementation in public institutions.
Point of friction. Participants highlighted two main concerns that could interfere with this process. First, they feared
that downstream applications would not keep the intended safeguards intact due to diverging interpretations. P8
described their experience when meeting lawyers who were “discussing whenever [...] a software application could be a

high-risk application. [...] [W]hen I was listening to them, I thought, no, this was not the intention of the entire endeavor

here. It was just [...] to safeguard certain principles” (P8). This perception was shared by other participants, who stated
that “it’s not just about complying to the letter of the EU AI Act but also the spirit, the spirit of the act is to empower affected

individuals to safeguard their rights” (P11). Second, public perceptions of the EU AI Act created by the media were
identified as a major obstacle in its implementation, described as the “hype aspect [...], because it takes so much time and

energy to just get back down to reality and make sure that everybody has the same grounding for these conversations” (P6).

4.2.2 The implementation of explainability and contestability explicates how responsibility moves between regulators.

Translation. Participants repeatedly reflected on who would be responsible for implementing explanation and contes-
tation mechanisms (as depicted in Figure 2-A and B). Participants considered ‘regulators’ [77], including policymakers,
standardization bodies, data protection authorities, and developers, to be the main actors in this translation operation.
The translation itself is driven through the “shared responsibility to ensure user representation in the development and

the use of the AI” (P5) and the fact that “what the people are struggling with is at very different levels [...], I mean, what

does explainable AI mean?” (P8). Technical standards were perceived to be one of the main components to clarify the
allocation of responsibility, but their enforcement again raised questions:

[I]f there are decisions made by a software company, upon services or somehow affecting [people’s] rights, this

needs to be justified and explicable. And if you can’t explain why a certain decision was made or a service

was not offered, you have a problem. (P8)

Point of friction. Due to the conceptual ambiguity with which legal texts treat both design principles, fulfilling
their respective responsibility means that regulators are forced to interpret the provisions, potentially resulting in
conflicting points of view between the ‘executive’ and ‘organizational’ levels. Importantly, participants also stated
that the regulation of AI systems has not yet actually taken place, as “nobody has implemented the EU AI Act yet, to

my knowledge. There’s no national law to set down sanctions” (P6). This has two implications: While first, the task of
interpreting the regulatory provisions is not clearly assigned between EU jurisdiction, national authorities, and public
institutions; second, the translation operation of assigning responsibility for this interpretation can still be shaped,
leaving room to delineate “how to handle conflicts” (P6) and “how we are going to adapt our legal system” (P1).
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4.2.3 Collaboration between communities is painful but strengthens the implementation of explainability and contestability.

Translation. Participants who had come into contact with both legal and design research on AI regulation regularly
highlighted the potential and shortcomings of interdisciplinary collaboration. To exemplify, participants criticized that
technical explanations of AI behavior often were not available “only because at the beginning of the process, they haven’t

thought about that” (P1). In consequence, and because “explainable AI does not fit into the justification of legal decisions”
(P2), policy-makers were considered to have an incomplete picture of technology. Explainability was described to
facilitate translation between the social worlds of disciplines, since “as soon as we start to explain what we are doing and

what we find out in our research to lay people, everyone else, also from different disciplines, could understand” (P8). In turn,
legal studies could improve the normative force of design research by giving it “a bit more punch” (P9):

[O]ne thing that legal studies can help is to say: ‘No, you have to care about this not just because we are a

bunch of hippies trying to save the world, but also because if you don’t, you’re going to have lots of problem

with the law [...] or even have your system not being commercialized in a particular jurisdiction. (P9)

Point of friction. While the advantages of this translation process thus become evident, following through on it
was described to be “painful” (P8). Especially for people removed from the technical sides of AI, “even explaining the

concept of explainability sometimes can be challenging because they have to understand that AI is a black box” (P14),
which is complicated further in the case of complex models that are difficult to explain in general. Similar comments
were made about the distinction between judicial and non-judicial contestation actions, since “there wasn’t really a

distinction [...] [s]o that would have been like one big grouping, looking at it from a legislator’s perspective” (P5). Participants
who had experience in both technical and legal disciplines described it as “very challenging” to “find a right level of
abstraction where we don’t get too bogged down on the details [...] versus where we don’t generalize too much” (P9). Further,
“interdisciplinary research requires [...], a different type of language [and] [t]here is incommensurability between methods

and approaches, [...] but I think that this is how we can resolve our grand challenges” (P8). Finding translation operations
that facilitate shared conceptual understanding and vocabulary is thus essential to effectively inform regulatory efforts.

5 Discussion

Drawing from the insights generated in the interviews, we suggest three main recommendations for policy-making
and regulation in explainability and contestability. A figure visualizing the duality of both principles is included in the
supplementary material.

Strengthening the intersection of explainability and contestability in legal instruments and trustworthy
AI governance. In the interviews, a consensus emerged that contestability allows individuals to exercise control over
AI usage by public institutions and that is based on information embodied by explainability. While individual action
was seen as a way to assess the acceptability of specific decisions, collective action was considered more suitable for
challenging the system’s overall suitability. Legal research suggests that the optimal governance scheme combines
indirect control (by a regulation authority) and direct oversight (by decision subjects who appeal decisions and get
redress, also called “democratic control” [13]) [43, 92, 97]. We find that this direct oversight by decision subjects through
contestability mechanisms is both (i) considered positively by AI regulation experts and (ii) not very familiar to them
when it comes to concrete ways to implement it, possibly due to its absence in regulatory instruments like the EU AI
Act. The equilibrium between indirect and direct control over public AI thus should be reconsidered, e.g., by giving
more place to direct control using non-judicial contestation means. This can be supported by providing explanations
that disclose the purpose of an AI system’s development and deployment (normative) rather than merely describing its

Manuscript submitted to ACM



14 Schmude et al.

workings (descriptive) [13]. Public institutions should thus ensure that provided explanations are relevant and aligned
with the recipient’s goals and level of knowledge [26, 73] by considering which kind of contestation they enable [89].
Further, public institutions can engage with the regulation ecosystem (e.g., AI Office, standardization bodies) to receive
support in the alignment between regulatory intent of explainability and contestability and their implementation [77].

Going beyond judicial contestability in lawmaking and public policy. The majority of the interviewees
were familiar with judicial means of contestation and unfamiliar with non-judicial ones, which explains why this
aspect of contestability remained overlooked in regulatory initiatives until now [52]. We argue that public institutions
should adopt a more holistic approach to contestability that goes beyond “complying to the letter” to improve trust
and acceptability. To this end, non-judicial means to implement contestability could be better leveraged in legal
instruments guiding the implementation of AI regulations, especially as standards are developing into means of judicial
control [42, 87]. While policy needs to decide what can be contested, who can contest and who is accountable, and which
types of review should be put in place [60], design and HCI research has proposed ways for non-judicial contestation.
These include tools for scrutiny, annual assessments, or differential treatment (i.e., room to negotiate decisions between
decision subjects and operators) [5]. Such mechanisms should ensure that decision subjects are given an opportunity to
understand their situation [62] and can articulate their voice in the process [102]. Public institutions can thus benefit
from engaging with design and HCI researchers regarding the implementation of contestability in AI system design.

Using participatory approaches to resolve implementation challenges of contestability. The design of AI
systems involves encoding legislation into software [103], meaning that design decisions about input features, data types,
and human-AI interactions become policy decisions that are no longer delegated to public deliberation but rather to third-
party developers [69]. Because important decisions are thus made early in the design process, participants emphasized
the need to involve stakeholders, particularly decision subjects, through "early-stage deliberations" [53]. By integrating
contestability as a co-designed and technical feature of the system itself rather than as a legal standard to meet, public
institutions could align values embedded in AI systems with those of citizens. This might improve the acceptability of
AI decisions while avoiding excessive contestation during operation. To this end, we highlight two main aspects of
participatory approaches: i) the deliberations’ level of abstraction and ii) the participation mechanisms. Regarding the
level of abstraction, prior work suggests that, instead of focusing on technical design decisions, participatory approaches
should center around the values and policies embedded in code [2]. These values and policies can, in turn, be selected
through citizen-wide participation before being embedded in AI systems [13]. Citizen assemblies or advocacy groups
that represent groups that are unable to participate fully (e.g., children) can be alternatives to direct participation
mechanisms [13]. Mediation through civil society organizations or ombudspersons can further serve as additional
channels for collective contestation.

5.1 Limitations

Like any research, this study had limitations. First, the single 30-minute card sort, despite being refined through four
pilot studies, likely influenced the depth of participants’ exploration and classification of the cards. Second, the citation
graph presented was a simplified subset of literature on explainability and contestability and did not capture the whole
research landscape, but served as a prompt for participants to share their interdisciplinary experiences. Third, the focus
on an EU context for recruitment and analysis of regulation and implementation procedures excluded comparisons
with other jurisdictions, which we highlight as a fruitful direction for future research.
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6 Conclusion

In this work, we conceptualized explainability and contestability and their translation for implementation by interviewing
14 interdisciplinary experts on AI regulation. We provided distinctions to facilitate these translations, including between
normative and descriptive explanations, individual and collective contestation action, and judicial and non-judicial
contestation channels. We further described three main processes of translation pertaining to the preservation of the
regulation’s spirit, the responsibility for interpreting regulatory provisions, and the essential but difficult collaboration
between disciplines. Based on these findings, we recommend i) strengthening the intersection between both principles
in policy and governance, ii) considering non-judicial channels of contestation to improve trust, and iii) employing early-
stage deliberations in the development of public AI systems to improve acceptability and avoid excessive contestation.
With this work, we aimed to inform research and policy efforts that leverage explainability and contestability in the
development of trustworthy public AI systems.

AI Usage Statement

During the final preparation of this manuscript, we utilized three AI-assisted tools for copy-editing: Claude 3.5 Opus
(released by Anthropic in 2024),Writefull, and Grammarly. These tools were used solely to improve clarity and readability
without altering the paper’s intellectual content, methodology, or findings.
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A Card sort material and citation graph
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Fig. 4. Card sort material. The image depicts the full selection of 40 cards with explainability and contestability mechanisms.
Participants received these cards and were asked to sort them into self-defined categories. Numbers were assigned at random, serving
as IDs. New items could be added using the stack of empty cards.

Fig. 5. Overview of the citation graph. The image shows the citation graph used in the study to elicit participants’ reflections on
the research landscape. The graph is the largest connected component of the co-reference graph related to contestability and AI, and
it also includes references on the ‘right to explanation’. The detail shows a zoom on the “explainable AI” cluster in the network.

Manuscript submitted to ACM



“Two Means to an End Goal”: Connecting Explainability and Contestability in the Regulation of Public Sector AI 21

B Duality of explainability and contestability
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Fig. 6. Duality of explainability and contestability. The figure shows a grid created from two dimensions of explainability and
contestability: descriptive versus normative explanations and individual versus collective action. Each quadrant contains examples of
mechanisms that are assigned to the corresponding dimensions. We describe four examples: ‘Justifying individual decisions’ requires
providing explanations to specific decision subjects (individual) in order to explain why a decision is correct and fair (normative).
‘Early-stage deliberations’ are likely focussed on aligning the values of an AI system with those of the citizens (normative), thus
providing a form of collective democratic control. ’Third party auditing programs’ aim to capture a detailed technical account of the
AI system (descriptive) in collaboration with experts and the deploying institution (collective). Lastly, by ’communicating the system’s
logic’ public servants might provide decision subjects (individual) with a general overview of the algorithmic decision-making process
(descriptive). The combination of both dimensions in a grid is based on insights from the interviews and aims to offer a new lens to
conceptualize the duality of mechanisms in explainability and contestability.
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